

70 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

Delay bounded range Query processing in peer-to-peer systems by

using balanced Kautz tree

1. Ashwini U. Pharalad

 ashwinipharalad@gmail.com

 4
th

 sem CSE, VTU, Belgaum

2. Professor Vivekanandreddy

 Vivekb3480@gmail.com

 Dept. of PG studies, VTU, Belgaum

Abstract-Peer to peer network is a collection of

computers that can communicate and share

information with one another wherein the

information is distributed among the peers. All peers

are equally privileged equipotent participants in the

application which rely on their own computing

power and bandwidth. With the increasing

popularity of the peer-to-peer (P2P) computing

paradigm, many efficient range query schemes for

distributed hash table (DHT)-based P2P systems

have been proposed in recent years. Although those

schemes can support range query without modifying

the underlying DHTs, they cannot guarantee to

return the query results with bounded delay. The

query delay in these schemes depends on both the

scale of the system and the size of the query space or

the specific query. In this paper, we propose an

efficient range query processing scheme to support

delay-bounded single-attribute and multiple-

attribute range queries. We first describe the order-

preserving naming algorithms for assigning

adjoining ObjectIDs to objects with close attribute

values. Then, we present the design of the

forwarding tree to efficiently match the search paths

of range queries to the underlying DHT topology.

Based on the tree, two query processing algorithms

are proposed to, respectively, process single-

attribute and multiple attribute range queries.

Index Terms—Peer-to-peer computing, distributed

hash table (DHT), delay bounded, range query.

1 INTRODUCTION

In this paper, we describe an efficient delay bounded

efficient range query scheme. Efficient range query

scheme operates on top of a high-performance

constant-degree DHT scheme, and does not need to

modify the underlying DHT infrastructure. DHT

provides support for scalable and efficient exact-

match query of distributed objects on peers. However,

it cannot support range queries for attribute values.

The basic components of efficient range query

scheme include two parts: order-preserving naming

and range query processing. Efficient range query

scheme first uses order-preserving naming algorithms

to assign to objects with close attribute values the

Object IDs adjoining in the Kautz namespace so as to

publish them on related peers. Then Efficient range

query scheme provides efficient query processing

algorithms to forward range queries to appropriate

peers and return query results within a bounded delay.

71 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

Based on the number of attributes that queried, range

queries can be classified as the single-attribute range

query and the multiple-attribute range query. Efficient

range query scheme adopts order-preserving naming

algorithms Single hash and Multiple hash, and query

processing algorithms PIRA and MIRA, to perform

single-attribute and multiple-attribute range queries,

respectively.

Efficient range query scheme is built on top

of the underlying DHT. It relies on the underlying

DHT to organize its P2P overlay and provide much

of the robustness, availability, and load balancing.

Efficient range query scheme uses the naming

algorithms to assign to objects order-preserving

Object IDs and efficiently propagates the range

queries in the overlay, while the underlying DHT

organizes the peers in an overlay and handles the

dynamic joining or leaving of peers. If a peer fails,

the underlying DHT automatically ensures that

other peers in the overlay takes over the

responsibility for the failed peer and provides

graceful fail-over by using replication or other

mechanisms. And the underlying DHT also deals

with the routing and publishing of objects according

to the Object IDs. In some sense, the underlying

DHT shields Efficient range query scheme from the

dynamics of peers and the complexity of the P2P

overlay, so the design of Efficient range query

scheme can be focused on the naming and range

query processing algorithms.

2 RELATED WORK

The main contributions of this paper include the

following three parts:

1. We propose the partition tree model to provide

orderpreserving mappings from the query space to

the namespace of DHT. The single-attribute naming

algorithm Single hash and the multiple-attribute

naming algorithm Multiple hash are designed to

assign adjoining ObjectIDs to objects with close

attribute values, so that they can be published to the

same or related peers in the system to support

efficient range queries.

2. We design the forward routing tree (FRT), which

matches the search paths of range queries to the

underlying DHT topology efficiently. Based on the

tree, we propose the range query processing

algorithms PrunIng Routing Algorithm (PIRA) and

Multiple- attribute prunIng Routing Algorithm

(MIRA) to, respectively, perform single-attribute

and multipleattribute range queries within a

bounded delay.

3. We analyze the lower bounds on the delay and

message cost for range queries, and evaluate the

query delay and message cost of Armada by both

theoretical analysis and simulations.

For general range query, the scheme first routes the

query to the peer in charge of the PeerIDs, and first it

checks whether PeerID is prefix of ObejectID, if so

then forwards the query to its related peer. An

efficient indexing structure called BK (balanced

Kautz tree) tree that uniformly maps the m-

dimensional data space onto DHT nodes, and then

proposes a BK tree-based range query scheme called

ERQ that processes range queries in a parallel

fashion and guarantees to return the results in a

bounded delay. ERQ shows that the BK tree is an

efficient indexing structure for distributed complex

queries.

 In DHT, the identifiers of peers (i.e., PeerIDs) are

Kautz strings of base 2 and their lengths may be

different. The maximum length of PeerIDs is less

than 2 logN and the average length is less than logN.

Peers are organized into an approximate Kautz graph

72 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

according to their PeerIDs. Each object in DHT is

assigned an ObjectID by the naming algorithm

Kautz_hash. ObjectIDs are Kautz strings distributed

in the Kautz namespace KautzSpace(2,100)and are of

fixed length 100, which is long enough for a P2P

system with 2^50 peers . Each object is published

onto a

Unique peer whose PeerID is a prefix of its ObjectID.

 The scheme compares the directed controlled

flooding (DCF) mechanism (hereafter called DCF-

CAN) which can achieve a good overall performance

with Efficient range query scheme but it has a query

delay of more than O(N^1/d), with an increasing rate

almost proportional to the increase in the size of

range queries. DCF-CAN can support only single-

attribute range query. Wherein efficient range query

scheme has average query delay less than logN.

3 SYSTEM ARCHITECTURE

It first uses order-preserving naming algorithms

to assign to objects with close attribute values

the objectIDs adjoining in the Kautz namespace.

so as to publish them on related peers.

Fig.1 System Architecture

Then,provides efficient query processing algorithms

to forward range queries to appropriate peers and

return query results within a bounded delay. Based

on the number of attributes that queried, range

queries can be classified as the single-attribute

range query and the multiple-attribute range query.

Range query scheme adopts order-preserving

naming algorithms Single hash and Multiple hash,

and query processing algorithms PIRA and MIRA,

to perform single-attribute and multiple-attribute

range queries, respectively. DHT organizes the

peers in an overlay and handles the dynamic joining

or leaving of peers. If a peer fails, the underlying

DHT automatically ensures that other peers in the

overlay takes over the responsibility for the failed

peer and provides graceful fail-over by using

replication or other mechanisms. And the

underlying DHT also deals with the routing and

publishing of objects according to the ObjectIDs.

4 MODULES

Forward tree construction(FRT)

Partition tree construction.

Identifying peer region

Forwarding range query

4.1 FORWARD TREE CONSTRUCTION

 Fig. 2 Forward Tree Construction

 In forward tree construction, peerID should be

assigned for each peer and their length of each

73 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

peerID may be different. Neighboring symbols in

each peer should be different.

 FRT is formed by using following rules:

 1. The root is peer P.

 2. Each node in the FRT is a peer in

 DHT.

 3. For Each node in FRT, its child

 nodes at next level is its neighbours.

 4. The FRT has (n+1) levels with root

 node at 0
th

 level.

 4.2 PARTITION TREE CONSTRUCTION

 Fig. 3 Partition Tree Construction

Partition tree construction is similar to binary tree.

Partition tree has n+ 1 level with root node at the

0th level. The root node has three child nodes,

while other intermediate nodes have only two

children. Labels of edges from a father node to its

children can be 0 or 1 or 2, increasing from left to

right, but they should be different from in-edge’s

label of the father node.

 We partition the entire interval of attribute

values [L, H] onto the partition tree The root node

represents the entire interval [L,H] and other nodes

represent subintervals of [L,H]. Each child node

evenly partitions the subinterval represented by its

father node.

4.3 IDENTIFYING PEER REGION

 Fig.4 Identifying peer region

In this module, single_hash naming algorithm is

designed to be an interval-preserving function

from attribute-value interval [L,H] .Any attribute-

value subinterval can be mapped to a Kautz

region in the charge of some related peers and

identify the peer which handles range Query.

Then, range queries can be performed by

forwarding queries to the appropriate peers.

4.4 FORWARDING RANGE QUERY

Fig. 5 Forwarding range query

In this module, Based on the FRT, Armada perform a

search in the FRT for all the destination peers that are

in charge of the Kautz region [LowT, HighT].

74 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

Suppose the Kautz strings LowT and HighT have a

common prefix, then forward Query request to all the

destination peers are at the same level of the FRT.

Query result is returned within bounded delay.

5 DATABASE DESIGN

Database-backend applications use databases in very

specific ways. They do all the input, processing, and

display in the application. They use the database to

store information that must be kept after the

application exits and information that must be shared

with other applications.

 Fig.6 Database Design

In summary, the application does its own

 Input

 Processing

 Display and relies on the database for:

 Permanent storage

 Sharing information

6 METHODOLOGIES

The design of efficient range query scheme can be

focused on the naming and range query processing

algorithms respectively, for single-attribute and

multiple-attribute range queries.

6.1 SINGLE-ATTRIBUTE RANGE QUERY

In this section, we present the design of the single-

attribute range query scheme in efficient range

query scheme.

6.1.1 Single-Attribute Naming

We propose an order-preserving naming

algorithm Single hash to assign to objects with

close single attribute values the ObjectIDs

adjoining in the Kautz namespace. According to

the properties of DHT, objects with adjoining

ObjectIDs are published on the same or related

peers.

Algorithm on single_hash

{
Single_hash (attributevalue c, value L, value H,

length k)

Step 1 : Initialize left to 0 and right to 1.

Step 2 : Initialize nextid[0][left] to 1,

nextid[0][right] to 2.

Step 3 : Initialize nextid[1][left] to 0,

nextid[1][right] to 2.

Step 4 : Initialize nextid[2][left] to 0,

nextid[2][right] to 1

Step 5 : if c>H or c<L then return error.

Step 6 : initialize S to null.

Step 7 : if c € [L,L+1/3*(H-L)] then goto Step 8.

Step 8 : Assign 0 to S[0],a<-L,b-<L+1/3*(H-L).

Step 9 : if c € [L+1/3*(H-L),L+2/3*(H-L)] then

goto Step 10.

Step 10: Assign 1 to S[0],a<L+1/3*(H-L), b-

<l+2/3*(H-L).

Step 11 : if c € [L+2/3*(H-L),H] then goto Step 12.

Step 12: Assign 2 to S[0],a<L+2/3*(H-L),b-<H

Step 13 : for i<-1 to k-1 do

Step 14 : if c>(a+b)/2 then do

Step 15 : assign direction<-right,a<-(a+b)/2 else goto

step 16

Step 16: assign direction<-left,b<-(a+b)/2.

Step 17 : assign S[i]<-nextid[S[i-1]][direction].

Step 18 : return S and end.

75 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

Fig .7 Partition tree P (2, 4) for attribute-value interval [0, 1].

We propose a partition tree P (2, k) model to help

design the Single hash algorithm. We partition the

entire interval of attribute values (L, H) onto the

partition tree P (2, k). The root node represents the

entire interval (L, H) and other nodes represent

subintervals of (L, H). Each child node evenly

partitions the subinterval represented by its father

node. In the example shown in Fig. 7, the attribute

value 0.1 is in the subinterval represented by the leaf

node P with label 0120; thus, the Kautz string 0120 is

assigned as the ObjectID of the object with attribute

value 0.1 by the Single hash algorithm.

6.1.2 Single-Attribute Range Query Processing

When a peer P invokes a range query [LowV

,HighV] , it first acquires Kautz strings LowT and

HighT : LowT = Single hash(LowV ,L,H, k) and

HighT = Single hash(HighV ,L,H, k).Based on the

FRT, Efficient range query scheme uses PIRA

(PrunIng Routing Algorithm)to perform a pruning

search in the FRT for all the destination peers that

are in charge of the Kautz region [LowT, HighT].

Algorithm on PIRA:
PIRA (value low V, value high V);

Step 1: if low V<highV then return error

Step 2: assign lowT<-single_hash (lowV, L, H, k);

Step 3: assign highT<-single_hash (highV, L, H, k);

Step 4: assign comT<-commonprefix (lowT, HighT);

Step 5: if comT=null then goto step 6

Step 6: assign rangeset<-dividerange (lowT, highT);

Step 7: for each rangei € rangeset goto step 8

Step 8: do Prunningsearch (rangei, lowT, rangei,

highT) else goto step 9

Step 9: Prunningsearch (lowT, highT); end;

Algorithm on Prunningsearch

{
Prunningsearch (string lowT, string highT)

Step 1: assign comT<-commonprefix (lowT, highT);

Step 2: if is prefix (p, comT) then query (p)

Step 3: comS<-siffixprefix (peerid (p), comT);

Step 4: maxlevel<-lengthof (peerid (p)-lengthof

comS);

Step 5: Idown (maxlevel, lowT, highT); end;

}

Algorithm on Idown

{
Idown (depth h, string lowT, string highT)

Step 1: if h=0 then goto step 2

Step 2: then query (u), return;

Step 3: else for each R=a2…….ahXY € outneighbors

(u)

Step 4: do W<-XY;

Step 5: len<-lenthofstring (W);

Step 6: if (prefix (lowT, len) <W) and (W<prefix

(highT, len))

Step 7: R.Idown (h-1, lowT, highT);

}

76 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

 Fig.8 An example of FRT.

 Fig.9 An example of PIRA

Fig. 9 shows an example of using PIRA for search in

the FRT shown in Fig. 8. In the example, peer 212

issues a range query [0.1, 0.24], the entire attribute-

value interval is [0, 1] and k =4. By the Single hash

algorithm, we can get LowT = 0120 and HighT =

0202. Thus, the destination peers are all at the third

level of the FRT. The dashed lines with arrows in Fig.

8 show search paths of PIRA.

6.2 MULTIPLE-ATTRIBUTE RANGE QUERY

Many applications require the support for multiple-

attribute range query on DHTs, e.g., the query “15 _

age _ 18 and 80:5 _ score _ 95”.

6.2.1 MULTIPLE-ATTRIBUTE NAMING

We use the partition tree to help design the

multipleattribute naming algorithm, Multiple

hash, to assign to objects partial-order preserving

ObjectIDs. We partition the entire multiple-

attribute space < [L0, H0],. . ., [Li, Hi], . . . , [Lm-

1,Hm-1]> onto the partition tree along attributes

A0,A1, . . . , and Am-1 in a round-robin style.

Each node in the partition tree represents a

multiple-attribute subspace and the root node

represents the entire space < [L0, H0],. . ., [Li,

Hi], . . . , [Lm-1,Hm-1]> . For any node P at the

jth level with f child nodes, let i denote the value

of j modm. Then, the subspace w represented by

node P is evenly divided into f pieces along the ith

attribute (i.e., attribute Ai), and each of the f child

nodes represents one piece Thus, each node at the

same level of the tree represents a

multipleattribute subspace of the same size and

the union of all such subspaces is the entire

multiple-attribute space. Fig. 10 shows an

example of the partition tree P(2,4) that represents

the 2D (m = 2) multiple-attribute space <[0, 6], [0,

8]>.

Fig.10 Partition tree P (2, 4) for multiple-attribute space <

[0, 6], [0, 8] >.

77 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

It works as follows: For any object O with the

multipleattribute value V =< v0, v1, . . . , vm-1 >,

V is surely in a subspace represented by a leaf

node in the partition tree. Then, the label of the

leaf node is assigned as O’s ObjectID.

6.2.2 Multiple-Attribute Range Query

Processing

We propose a new algorithm, called MIRA, to

process multiple-attribute range queries. MIRA

follows the basic idea of PIRA to perform

pruning search on the FRT of peer P = u1u2 . . .

ub that issues the range query w. In the example

in Fig. 10, we set m = 2, k =4 and the

multipleattribute space is < [0,6], [0, 8]> peer

212 issues a multiple-attribute range query <

[1.2,1.8],[1,5]> . By the Multiple hash algorithm,

we can get LowT =0120 and HighT =0210.

Therefore, the destination peers are all at the

third level of the FRT.

 Fig.11 An example of MIRA.

The dashed lines with arrows in Fig. 11 show the

search paths of MIRA. The search message is not

forwarded to peer 2020 because there is no

intersection between its descendants and the

destination peers.

7 RESULTS

Among the well-known efficient range query schemes,

only PHT, DCF-CAN, and Efficient range query

scheme can support singleattribute range queries and

multiattribute range queries on constant-degree DHTs.

Since the delay and message cost of PHT is much

larger than that of Efficient range query scheme, we

only compared the single-attribute range query scheme

and multiattribute range queries of Efficient range

query scheme with DCF-CAN when the degree of the

underlying DHT is equal (i.e., the parameter d is set to

be 2 in DCF-CAN).

 The DCF-CAN scheme uses CAN as the

underlying DHT. When a peer P invokes a range

query [l, u] in DCF-CAN, it first routes the query to

the peer in charge of the median value and then

starts two “waves” of propagation. In the first wave,

the current peer propagates the query only to the

neighbors that intersect the query and have a

“higher” interval than the current peer. Then, the

current peer propagates the query to the neighbors

with a “lower” interval.

Fig.12The impact of range size on query delay

78 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

Fig.13 The impact of network size on query delay

Fig.14 The impact of network size on message cost

Fig.15 The impact of range size on message cost

CONCLUSION

In this paper, we will have two independent modules

as shown below. We proposed a delay-bounded range

query scheme, called efficient range query scheme.

Built on top of a high-performance constant-degree

DHT, efficient range query scheme supports single-

attribute and multipleattribute range queries. Both

analytical and simulation results demonstrated that

efficient range query scheme is delay-bounded and

highly efficient. The average query delay is less than

logN and the maximum delay is less than 2 logN,

independent of the size of query space and specific

queries. The average message cost of single-attribute

queries is about logN þ 2n _ 2 (n is the number of

peers that intersect with the query), which is very

close to the lower bound on message cost of range

queries on constant-degree DHTs. Furthermore, we

are extending efficient range query scheme to support

attribute values in various forms and provide other

complex query capabilities such as the top-k query

and fuzzy query.

REFERENCES

[1] Yiming Zhang, Ling Liu, Xicheng Lu and

Dongsheng Li, ―Efficient range query

processing over DHTs based on the balanced

Kautz tree 2010.

[2] Matthew Harren, Joseph M. Hellerstin, Ryan

Huebsh ―Complex qureis in DHT based peer to

peer networks, ᴁ Proc. ACM SIGCOMM ‘01, pp.

149-160, 2009.

79 Ashwini, Vivekanandreddy

International Journal of Innovations & Advancement in Computer Science

IJIACS

ISSN 2347 – 8616

Volume 3, Issue 1

April 2014

[3] Jean Marc Saglio, Michel Scholl, Tuan,

―Efficient query processing in p2p networks of

taxonomy based sources,ᴁ Proc. IEEE

INFOCOM ‘05, pp. 1677-1688, 2005.

[4]Hye Young Kang, Bog Ja LIm, and H. Yu,

―P2P Spatial query processing by Delaunay

triangulation, ᴁ Proc. ACM SIGCOMM ‘05,

Aug. 2010.

[5]Christin Weisner ,Alfons Kemper, Stefan

Brandal, ―Dynamic extensible query processing

in super based p2p systems,ᴁ Proc. 13th Int‘l

World Wide Web Conf. (WWW ‘04), May 2004.

[6] O.D. Sahin, A. Gupta, D. Agarwal, A. El

Abbadi, ―Query processing over peer to peer

data sharing systems,ᴁ IEEE/ACM

Trans.Networking, vol. 11, no. 1, pp. 17-32, Feb.

2003

