ABSTRACT:
In this paper generalized minimal closed maps that include a class of generalized minimal homeomorphisms and generalized minimal* homeomorphisms are introduced and studied in topological spaces. A bijective mapping $f: (X, \tau) \to (Y, \sigma)$, is said to be generalized minimal homeomorphism (briefly g- m$_i$ homeomorphism) if f and f^{-1} are g- m$_i$ continuous maps.

Mathematics Subject Classification: 54A05, 54C10.

Keywords: g- m$_i$ irresolute, generalized minimal* homeomorphism, g- m$_a^*$ open maps, g- m$_i^*$ closed maps

1. INTRODUCTION AND PRELIMINARIES

Section 2 is a brief study of generalized minimal homeomorphisms and generalized minimal* homeomorphisms in topological spaces.

Throughout this paper (X, τ), (Y, σ) and (Z, η) denote topological spaces on which no separation axioms are assumed unless otherwise explicitly mentioned. For any subset A of a topological space (X, τ), closure of A, interior of A and complement of A is denoted by $\text{cl}(A)$, $\text{int}(A)$ and A^c respectively. We recall the following definitions, which are prerequisites for our present study.

Definition 1.1: A proper nonempty subset A of a topological space (X, τ) is called

(i) a minimal open [5] (resp. minimal closed [7]) set if any open (resp. closed) subset of X which is contained in A, is either A or ϕ.

(ii) a maximal open [6] (resp. maximal closed)[7]) set if any open (resp. closed) subset of X which contains A, is either A or X.

Remark 1.2 [7]: Minimal open (resp. minimal closed) sets and maximal closed (resp. maximal open) sets are complements of each other.

Definition 1.3[2]: A subset A of a topological space (X, τ) is called

(i) a generalized closed[1] (briefly g-closed) set if $\text{cl}(A) \subseteq U$ whenever $A \subseteq U$ and U is an open set in X.

(ii) a generalized open (briefly g-open) set [1] iff A^c is a g-closed set.

Definition 1.4: A mapping $f: (X, \tau) \rightarrow (Y, \sigma)$ is said to be

(i) generalized closed (g-closed) map [4] if the image of every closed set in X is g-closed set in Y.

(ii) minimal open (resp. minimal closed) map if the image of every minimal open (resp. minimal closed) set in X is an open (resp. closed) set in Y.

(iii) maximal open (resp.maximal closed) map if the image of every maximal open (resp. maximal closed) set in X is an open (resp. closed) set in Y.

(iv) strongly minimal open (resp.strongly minimal closed) map if the image of every minimal open (resp. minimal closed) set in X is minimal open (resp. minimal closed) set in Y.

(v) strongly maximal open (resp.strongly maximal closed) map if the image of every maximal open (resp. maximal closed) set in X is maximal open (resp. maximal closed) set in Y.

(vi) minimal generalized open (resp. minimal generalized closed) map if the image of every minimal open (resp. minimal closed) set in X is g-open (resp. g-closed) set in Y.

(vii) maximal generalized open (resp. maximal generalized closed) map if the image of every maximal open (resp. maximal closed) set in X is g-open (resp. g-closed) set in Y.

Definition 1.5: A bijective mapping \(f: (X, \tau) \to (Y,\sigma) \) is said to be

(i) generalized homeomorphism [3] if \(f \) is g-continuous and g-open.

(ii) gc-homeomorphism [3] if \(f \) and \(f^{-1} \) are gc-irresolute maps.

(iii) minimal g-homeomorphism (resp. maximal g-homeomorphism) if \(f \) is minimal g-continuous (resp. maximal g-continuous) and minimal g-open (resp. maximal g-open).

Definition 2.1: A bijective mapping \(f: (X, \tau) \to (Y,\sigma) \), is said to be g-generalized minimal homeomorphism (briefly g-mi homeomorphism) if \(f \) and \(f^{-1} \) are g-minimal continuous maps.

Theorem 2.2: If \(f: (X, \tau) \to (Y,\sigma) \) is a bijective map, then the following statements are equivalent.

(i) Its inverse map \(f^{-1}: (Y, \sigma) \to (X, \tau) \) is g-mi continuous.

(ii) \(f \) is a g-mi open map.

(iii) \(f \) is a g-mi closed map.

Proof: (i) \(\Rightarrow \) (ii). Let \(V \) be any maximal open set in X, so that \(V^c \) is a minimal closed set in X. From (i) \((f^{-1})^{-1}(V) = f(V^c) = (f(V))^c \) is a g-minimal closed set in Y, so that \(f(V) \) is a g-maximal open set in Y. Therefore \(f \) is a g-mi open map.

(ii) \(\Rightarrow \) (iii). Let \(U \) be any minimal closed set in X, so that \(U^c \) is a maximal open set in X. From (ii) \(f(U^c) = (f(U))^c \) is a g-maximal open set in Y, so that \(f(U) \) is a g-minimal closed set in Y. Therefore \(f \) is a g-mi closed map.

(iii) \(\Rightarrow \) (i). Let \(U \) be any minimal closed set in X. From (iii) \(f(U) \) is a g-minimal closed set in Y, so that \((f^{-1})^{-1}(U) = (f(U))^c \) is a g-minimal closed set in Y. Therefore the inverse map \(f^{-1}: (Y, \sigma) \to (X, \tau) \) is g-mi continuous map.

Theorem 2.3: If \(f: (X, \tau) \to (Y,\sigma) \) is a bijective map and g-minimal continuous map, then the following statements are equivalent.

(i) \(f \) is a g-mi open map.

(ii) \(f \) is a g- mi homeomorphism.

(iii) \(f \) is a g-mi closed map.
Proof: (i) ⇒ (ii). Let U be a minimal closed set in X, so that U^c is a maximal open set in X. From (i) \(f(U^c) = (f(U))^c \) is a g-maximal open set in Y, so that \(f(U) = (f^{-1})^c(U) \) is g-minimal closed set in Y. Therefore \(f^{-1}(Y, \sigma) \to (X, \tau) \) is g-m_i continuous map. Hence \(f \) is a g- m_i homeomorphism.

(ii) ⇒ (iii). Let U be any minimal closed set in X. From (ii) \((f^{-1})^c(U) \) is a g-minimal closed set in Y, so that \(f(U) \) is a g-minimal closed set in Y, \(f(U) \) is a g-minimal closed set in Y. Therefore \(f \) is a g-m_i closed map.

(iii) ⇒ (i). Let V be any maximal open set in X, so that V^c is a minimal closed set in X. From (iii) \(f(V^c) = (f(V))^c \) is a g-minimal closed set in Y, so that \(f(V) \) is a g-maximal open set in Y. Therefore \(f \) is a g-m_a open map.

Definition 2.4: A bijective mapping \(f : (X, \tau) \to (Y,\sigma) \), is said to be generalized minimal* homeomorphism (briefly g- m_i* homeomorphism) if \(f \) and \(f^{-1} \) are g-m_i irresolute maps.

Theorem 2.5: If \(f : (X, \tau) \to (Y,\sigma) \) is a bijective map, then the following statements are equivalent.

(i) Its inverse map \(f^{-1} : (Y, \sigma) \to (X, \tau) \) is g-m_i irresolute.

(ii) \(f \) is a g-m_a* open map.

(iii) \(f \) is a g-m_a* closed map.

Proof: (i) ⇒ (ii). Let V be any g-maximal open set in X, then V^c is a g-minimal closed set in X. From (i) \((f^{-1})^c(V^c) = f(V^c) = (f(V))^c \) is a g-minimal closed set in Y, so that \(f(V) \) is a g-maximal open set in Y. Therefore \(f \) is a g-m_a* open map.

(ii) ⇒ (iii). Let U be any g-minimal closed set in X, so that U^c is a g-maximal open set in X. From (ii) \(f(U^c) = (f(U))^c \) is a g-maximal open set in Y, so that \(f(U) \) is a g-minimal closed set in Y. Therefore \(f \) is a g-m_a* closed map.

(iii) ⇒ (i). Let U be any g-minimal closed set in X. From (iii) \(f(U) \) is a g-minimal closed set in Y, so that \((f^{-1})^c(U) \) is a g-minimal closed set in Y. Therefore the inverse map \(f^{-1} : (Y, \sigma) \to (X, \tau) \) is g-m_i irresolute map.

Theorem 2.6: If \(f : (X, \tau) \to (Y,\sigma) \) is a bijective map and g-minimal irresolute map, then the following statements are equivalent.

(i) \(f \) is a g-m_a* open map.

(ii) \(f \) is a g- m_i* homeomorphism.

(iii) \(f \) is a g-m_i* closed map.

Proof: Similar to the proof of the Theorem 2.3.
Theorem 2.7: If \(f: (X, \tau) \rightarrow (Y, \sigma) \) and \(h: (Y, \sigma) \rightarrow (Z, \eta) \) are \(g\)-\(m_i^* \) homeomorphisms, then \(h \circ f: (X, \tau) \rightarrow (Z, \eta) \) is \(g\)-\(m_i^* \) homeomorphism.

Proof: Let \(U \) be any \(g\)-\(m_i \) closed set in \(Z \). Since \(h \) is \(g\)-\(m_i^* \) homeomorphism, \(h^{-1}(U) \) is a \(g\)-\(m_i \) closed set in \(Y \). But \(f: (X, \tau) \rightarrow (Y, \sigma) \) is \(g\)-\(m_i^* \) homeomorphism. Therefore
\[
f^{-1}[h^{-1}(U)] = (h \circ f)^{-1}(U)
\]
is a \(g\)-\(m_i \) closed set in \(X \). Hence \(h \circ f: (X, \tau) \rightarrow (Z, \eta) \) is a \(g\)-\(m_i \) irresolute map.

Again let \(V \) be any \(g\)-\(m_i \) closed set in \(X \). Since \(f \) is a \(g\)-\(m_i^* \) homeomorphism,
\[
f(V) = (f^{-1})^{-1}(V)
\]
is a \(g\)-\(m_i \) closed set in \(Y \). But \(h: (Y, \sigma) \rightarrow (Z, \eta) \) is a \(g\)-\(m_i^* \) homeomorphism. Therefore
\[
[(h^{-1})^{-1}(f^{-1})^{-1}](V) = [(h^{-1})^{-1} \circ (f^{-1})^{-1}](V)
\]
is a \(g\)-\(m_i \) closed set in \(Z \). That is
\[
[(f^{-1} \circ h^{-1})^{-1}](V) = [(h \circ f)^{-1}]^{-1}(V)
\]
is a \(g\)-\(m_i \) closed set in \(Z \). It follows that \((h \circ f)^{-1} \) is \(g\)-\(m_i \) irresolute. Hence \(h \circ f: (X, \tau) \rightarrow (Z, \eta) \) is \(g\)-\(m_i^* \) homeomorphism.

REFERENCES

